From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Mirifici logarithmorum canonis constructi; et eorum ad naturales ipsorum numeros habitudines; una cum appendice, de aliâ eâque prcestantiore logarithmorum specie contenda. Quibus accessere propositiones ad triangla sphcerica faciliore calculo resolvenda: Unà cum annotationibus aliquoot doctissimi D. Henrici Briggii, in eas \& memoratam appendicem.

Year: 1619
Place: Edinburgh
Publisher: Andrew Hart
Edition: 1st
Language: Latin
Figures: added collective title page
Binding: 18th-century English half-leather over marbled paper boards; gilt spine; red leather label; red edges
Pagination: 67, [1]
Collation: $\mathrm{A}-\mathrm{H}^{4} \mathrm{I}^{2}$
Size: 180x130 mm

Reference:

Henderson, James; Bibliotheca Tabularum Mathematicarum. Being a descriptive catalogue of Mathematical tables. Part I, Logarithmic tables (A. Logarithms of numbers), Cambridge, Cambridge University Press, 1926, \#6.0, p. 29;
Glaisher, James Whitbread Lee; et al.; Report of the Committee on Mathematical Tables, London, Taylor \& Francis, 1873, p. 156;
Horblit, Harrison D.; Collector's Choice: A selection of books and manuscripts given by Harrison D. Horblit to the Harvard College Library, The Houghton Library, Cambridge, MA, 1983, \#37, p. 33;
Horblit, Harrison D.; One Hundred Books Famous in Science, New York, Grolier, 1964, \#77b

Notes on John Napier and the book

John Napier was born into a leading, prominent family of Scottish lairds (wealthy landowners). The family surname is seen in early documents as Napeir, Nepair, Nepeir, Neper, Napare, Naper, Naipper and the present-day Napier. Little is known about John Napier's childhood and youth. He enrolled at St. Andrews University at the age of thirteen, but there is no record that he ever graduated. Napier later wrote that his fervent interest in theology was kindled at St. Andrews. It is probable that he left St. Andrews to study in Europe, and it must have been there that he acquired his knowledge of higher mathematics and his taste for classical literature.

In 1572 , just about the time of his marriage, Napier received title to the family estates. When time permitted from the daily running of his estates, John Napier played an active role in the Scottish Protestant reform movement. What time he had left he used to study mathematics. He is best known today for his invention of logarithms, but in his own time he was best known for his religious commentaries.

Napier's first book on logarithms was one of the most influential mathematical books ever published. It introduced the world to the concept of logarithms and their use. By simplifying arduous calculation, that is, by reducing multiplication and division to addition and subtraction, logarithms became the fundamental principle

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh
behind most of the methods of, and aides to, computation prior to the invention of the electronic computer. They also proved to be a fundamental component of many mathematical systems.

After Napier had published the description (see Napier, John; Mirifici logarithmorum canonis descriptio, 1614) and the table of his logarithms, his intention was to publish a book describing how they had been calculated. He died before he could complete the task, but his son Robert Napier completed and published it in 1619. Napier's 1614 publication is always referred to as the Descriptio, and the 1619 volume as the Constructio.

While the Descriptio was reprinted many times, the Constructio, lacking any tables of logarithms, was of interest only to mathematicians and table makers and thus had far less attention paid to it. The Descriptio was translated into other languages almost as soon as it appeared, while the Constructio had to wait until 1889 before an English version was produced (see Napier, John [William Rae Macdonald, translator]; The construction of the wonderful canon of logarithms..., 1889). The notes on individual pages presented here are based largely on the English translation by Macdonald.

A detailed description of Napier's methods of calculating logarithms can be found in the paper: Carslaw, H . S., "The discovery of logarithms by Napier," Mathematical Gazette, Vol. VIII, 1915-1916, pp. 76-84, 115-119.

This work was issued in a confusing manner. It contains a collective title page very similar to that of the Descriptio (but without any Descriptio text) followed by the title page of the Constructio.

Notes on the old forms of trigonometric functions

At the time of this publication, trigonometric values (chords, secants, sines, versed sines (cosines), tangents, half tangents and so on) were not usually defined as they are today (in which the functions, such as the sine, are ratios of the length of two sides of a triangle).

The above figure shows a circle and an angle (φ) marked off along the circumference. With respect to the

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh
given radius, the various trigonometric functions were defined as the lengths of specific lines, for example:

- chord of φ was the length of the line BD,
- sine of φ was the length of the line BE ,
- versed sine of φ was the length of the line DE,
- tangent of φ was the length of the line DC,
- half tangent of φ was the length of the line AF (the half tangent is really the tangent of half the angle), and
- secant of φ was the length of the line AC

General notes on the condition of older books

Books as old as this usually suffer from some problems just because of the wear they have been subjected to over the many years of their existence. One usually noticeable condition item is known as browning or foxing of the paper - usually brown or yellow areas due to the chemical action of a micro-organism on the paper. This can vary dramatically from page to page, often depending on such variables as the contents of the paper used, the composition of the ink used by the printer, and the dampness (or lack of) that the work has been exposed to over the years. Where these images were badly foxed, some slight manipulation of the intensity of the colors has been done to ease the reading of the foxed page. Any other notable condition problem will be commented upon near the image concerned.

Use of these notes and images

This file has been made available by the generosity of Erwin Tomash and the Tomash Library. It is free for use by any interested individual, providing that no commercial use is made of its contents and any non commercial use acknowledges the source. The notes and illustrations have been produced by Erwin Tomash and Michael R. Williams, both of whom beg forgiveness for any errors that they might have made.
© 2009 by Erwin Tomash and Michael R. Williams. All rights reserved.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

The front cover, spine and rear cover of this volume. The binding dates from the 18th century.

This book was purchased for the Tomash Library from the fourth Sotheby's sale of the Macclesfield library in November of 2004. The large bookplate denotes the Macclesfield South Library and their shelf mark 181. E. 33.

This paste-down endpaper also contains the label of the Tomash Library.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

This volume is a sammelband (the binding together of different works into one volume) of three works that are listed on the recto of the free endpaper. Only the work by Napier (Constructio) in included in this file.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

The verso of the free endpaper.

While this title page appears to be that of the Descriptio, it is actually the collective title page mentioned in the introductory notes.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

The verso of the collected title page.

The title page of this volume: Construction of the wonderful table of logarithms; and their relation to their natural numbers; with an appendix on the making of another and better type of logarithm. In addition to which are propositions for solving spherical triangles. Together with notes by Henry Briggs. By the author and inventor John Napier, Baron of Merchiston, etc. a Scot. Printed by Andrew Hart, Edinburgh, 1619.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Robert Napier writes a preface. It reminds readers that his Father had published his book on logarithms several years earlier and, in it, he mentioned that he would write another explaining how they were calculated if the mathematicians thought them worthy of his efforts. Robert indicated that his father died before finishing this book and he has taken up the task of completing and publishing it. It seemed reasonable to add to Napier's work an appendix explaining a new kind of logarithm that he had mentioned in the introduction to his book Rabdologiae (the logarithms that he and Briggs had agreed were better - those to base 10). He has also included an appendix by Henry Briggs that comments on the new logarithms and the rules Napier had set down for solving trigonometric problems in spherical triangles.

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

AD Lectorem.
fácili,quàm paucifsimis expedire) Deus longiorcm vite vfuram concefsiffet. Habes igitur (Lector benevole) in boc libello, doctrinam conftructionis Logarithmorwm (quos bîc numeros artificiales appellat; bunc enim tractaiū, ante inventam Logarithmorum vocem, apud S_{e} per aliquot annos confcriptum babuerat) copiofiffimè explicatam; in qua corum natura, fymptomata, ac varie ad naturales eorum numeros babitudines perpicuè demonftrantur. $V i \int u m$ eft etiam ipfi fyntaxi fubnectere Appendicem quandam, de alia Logarithmorum pecic multo praftantiore condenda, (cujus, ipfe Iuventor in Epiftola Rabdologix fue prafixa meminit) oo in qua Logarithmus vnitatis eft o. Hanc loco vltimo vltimus ejus labor excipit, ad vlteriorem T rigonometrice fue Logarithmice perfectionem Jpectans; nempepropofitiones quedam eminentif fime, in Triangulis phericis non quadrantalibus refolvendis, abSque eorum in quadrantalia aut rectangula divifione, oo abfque cafuum obfervatione: quas quidem Propofitiones in ordi. nem redigere, ej ordine demonftrare ftatuerat, nifi nobis morte praproperâ prareptus fuiflet. Lucubrationesetiam aliquot, CMathematici excellentifsimi D. Henrici Briggii publici apud Londinenfes Profefforis, in memoratas Propofitiones, $ో$ no vam hane Lozarithmorum feciem, T'ypis mandari curavimus; qui novi bujus Canonis fupputandi laborem gravifsimum, pro fingulari amicitiâ qua illi cum Patre meo L. M. intercefsit, animo liben. tifsimo in fe $\int u$ fcepit;creandi methodo, $-\sigma$ vfuum explanatione Inventori relictis. Nunc autem ipfo ex hâc vitâ evocato, totius. negotii onus docti (simi Briggii bumeris incumbere, \& Sparta hac ornanda illi forte quadam obtigiffe videtur. Hifce interinz (Lector) laboribus quibufcunque fruere, ơ prabumanitate tuat bani confulita. Vale.

Robertys Nepervs, Ro.

Napier's work consists of 59 propositions which describe everything from a logarithm table to its final construction.

Proposition 1: A table of logarithms (Napier refers it as a table of "artificial numbers" as this was the term he first used to describe them) is small, but with it one can do multiplication, division, and extraction of roots.

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Proposition 2: Progressions of numbers of are two types: arithmetic and geometric. Arithmetic progressions are ones with equal intervals between entries (e.g., $1,2,3 \ldots$ or $2,4,6, \ldots$) while geometric progressions are those with increasing or decreasing intervals (a constant being used as a multiplier) (e.g., $1,2,4,8, \ldots$ or $243,81,27,9,3,1$).

Propositions 2-6: If you start with a big number as the radius of the defining circle, your table of sines will be more accurate than if you start with a smaller number. You can use decimal fractions to add more digits (\#5 describes decimal fractions which were then a quite new concept). After calculating the table you can remove any decimal fractional digits as the error made in so doing is negligible.

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Canonis Constaverio:

funt $9987643 \frac{\text { singest }}{\substack{\text { icoocose }}}$, accipi poffunt hi 9987643 abfque fenfibili errore.
7. Eft pratereǹ alia accurationis formula; quuns foilicet quan: titas ignota, Seu numero inexplicabilis, inter terminos numerales pluribus vnitatibus non differentes includitur.

Vt pofitâ Diametro circuli partium 497; quia nefcitur pracifè quot partium fit ambitus, idèo eruditiores ex Archimedis fententiâ, eum inter terminos 1562, \& 1561 incluferunt. Item ficofarum quadrati qualibet fit partium rooo, erit diagonalis radix quadrata numeri 2000000; qux cùm fit numero inexplicabilis, ideò per extractionem radicis quadratx quaruntur ejus termini, fcilicet 1415 terminus major, \& 1414 ter-
 nor: videlicet quanto minor terminorum differentia fit, tanto major accuratio.
Vice ipfarum quantitatum ignotarum, termini earum funt addendi, $u b f t r a h e n d i$, multiplicandi, aut dividendi prout opus fuerit.
8. Adduntur bini alicuius quantitatis termini ad binos terminos alterius, quum minor illius minori buius, \& maior illius maiori buius additur.

Vt fit linea
a $b c$, in duas quantitates a b, \& $b c$ divifa;fit $a b$ inter terminos 123.5 majorem, \& 123.2 minorem : fitque $b c$ inter terminos 43.2 majorem, \& 43.1 minorem. Additis ergo majore ad majorem, \& minore a d minorem, fiet tota quantitas a c inter terminos 166.7 \& 166.3 .
9. CMuliplicantur bini alicuius quantitatis termini per binos terminos alterius, quum minor illius in minorem buius, or maior illius in maiorem buius ducitur.

```
A 4 Vt
```

Proposition 7: If a number is unknowable (e.g. a repeating decimal like the square root of 2) then you can assign a lower bound (l) and an upper bound (u) and perform the operations on these bounds rather than on the number itself.
Proposition 8: If doing an addition with two numbers (A and B) that have lower and upper bounds $\mathrm{A} l, \mathrm{~A} u, \mathrm{~B} l, \mathrm{~B} u$, then the result will be between $\mathrm{A} l+\mathrm{B} l$ and $\mathrm{A} u+\mathrm{B} u$.
Proposition 9: If multiplying two numbers with bounds, the result will be between $\mathrm{A} l \times \mathrm{B} l$ and $\mathrm{A} u \times \mathrm{B} u$

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Proposition 10: Subtraction of two bounded numbers will yield a result between (assuming $\mathrm{A}<\mathrm{B}$) $\mathrm{B} l-\mathrm{A} u$ and $\mathrm{B} u-\mathrm{A} l$.
Proposition 11: In division the bounds for A / B will be between $\mathrm{A} u / \mathrm{B} l$ and $\mathrm{A} l / \mathrm{B} u$
Proposition 12: In limits, the fractional parts of both the lower and upper limits may be removed if 1 is added to the upper limit.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Canonis Constrvctio.

Hactenus de accuratione, fequitur de facilitate operis. Omnis progreßionis Arithmetica facilis eft conftructio, Gcometrice autem non omnis.

Patet hoc,fiquidem additione \& fubftra\&ione fit facillimè Arithmetica progrefsio: geometrica verò, difficillimis multiplicationibus, divifionibus, \& radicum extractionibus continuatur.

Sole Geometrice ille progrefsiones facilè continuantur, que per $\int u b$ ftractionem facilis partis numeri à numero toto oriuntur.
14. Partes numerifaciles dicimus, partes quaflibet cujus denominationes unitate \& cyphris quotcunque notantur: babentur autem ha partes, rejiciendo tot figuras ultimas principalis numeri, quot fint cyphre in denominatore.

Vt partes decima, centefima, millefima, 10000^{2}, $100000^{2}, 1000000^{2}, 10000000^{2}$, faciles dicuntur, quia cujuflibet numeri decima pars habetur delendo ejus ultimam figuram; centefima duas ultimas, millefima tres ultimas figuras, \& fic de cateris, femper delendo tot figuras ultimas quot funt cyphrx in denominatione partis. Vt decima pars hujus 993^{21} eft 993^{2}, ejus autem centefimaeft 993 , millefima 99,8 c.
15. eMediocriter etiam facile habentur partes dimidia, vigeft. ma, ducentefima, \& alie per binarium ơ cyphras denominate; rejiciendo tot figuras vitimas principalis numeri, quot fuut cypbre in denominatore, or reliquum bipartiendo.

Vt numeri 9973^{218045} pars 2000^{2} eft 4986609, pars 20000^{2} eft 498660.
16. Hinc fequitur, $\sqrt{2} \dot{i}$ finu toto feptem cyphris aucto, ceterifque inde ortis filam 10000000^{am} partem fuljfraxeris, continuari polfunt quam facillime centum numeri, in ea proportione Geometrica, que eft inter finum totam \& finum eo minorem unitate, fcilicet 10000000 \& 9999999 ; bancque feriem proportiona: lium primam \mathcal{T} abulam nominamus.

Proposition 13: The construction of an arithmetic series is easy, geometrical series are not always easy.
Proposition 14: To find the tenth, hundredth, thousandth, etc. part of a number, simply remove the last $1,2,3$, etc. digits.
Proposition 15: A half, twentieth, two-hundredth, etc. part of a number is easily found by removing as many least significant digits are there are zeros in the divisor and then dividing the remaining number by 2 .
Proposition 16: A table (the "first table") of 100 numbers begins with $10,000,000.0000000$ and subsequent entries can be found by, at each stage, subtracting its $10,000,000$ part (i.e., the first entry is $10,000,000$; second entry is that number minus $1=9,999,999$; third entry is $9,999,999$ minus $0.9999999=9999998.0000001$, etc. as shown on the next page. The last of the 100 entries should be $9,999,900.0004950$.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Proposition 17: The second table is constructed much the same as the first, except there are only 6 positions to the right of the decimal point in the starting number, there will be only 50 numbers in this table and the last number must be as close as possible to the last entry in the first table. This can be done by subtracting the 100,000 th part of each entry to obtain the next. The last line on this page says that the final entry in the second table should be 9995001.222927 (this is incorrect - it should have been 9995001.224804 - see the Macdonald translation mentioned in the introductory notes for an extensive discussion of how this error propagated through all of Napier's logarithm tables).

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Proposition 18: A third table is to be constructed of 69 columns. Each column contains 21 entries constructed much like those in the first and second tables. The first column begins with 10,000,000,000.00000 (i.e., 5 digits to the right of the decimal point) and subsequent numbers are found by subtracting the 2,000 th of the previous entry as shown.

Once the last entry has been found it should be recorded but then (in subsequent steps) you may disregard any of the least significant digits so that your calculations will be easier.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Proposition 19: The first and last entries in column 1 are $10,000,000$ and $9,900,473$ and the ratio between them is very close to the ratio of 100 to 99 . Use this ratio (starting at the first column) to fill in the first entry of each column from 2 to 69 , each entry being 0.01 less than the previous one. Similarly, fill in the second entries of each column by making it 0.01 less than the entry in the previous column.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

CANONIS CONSTRVCTIO. 3

21. In tertia ergo Tabula, habes inter finum totwm, ©r medium finus totius, intcrjectos fexaginta octo numeros in proportione vt 100 ad 99 ; \& rurfus inter fingulos binos horum, interjectos viginti numeros in proportione vt 10000 ad 9995: \& rurfus inter binos primos horum, fcilicet inter 10000000 or 9995000 , babes in fecunda Tabula interjectos so numeros, in proportione vt 100000 ad 999s9: ঔ tandem inter binos primos horum, habes in prima T abula interiectos centum numeros, in proportione vt 10000000 finus totus ad 9999999; quorum differentia quum fit tantum vnitatis, non eft opus eam (interic. čis mediis) minutius partiri. Vnde be tres tabule (poftquam complete fucrint) ad tabulam \dagger artificialem computandam $\int_{\text {uf }}-\underset{\text { rithm }}{\boldsymbol{L} \mathrm{Log}^{g}}$
ficicnt.

Hucufque finus (eu numeros naturales, proportione geometrica progredientes tabulis facillimè infercre docuimus.
22. Supcreft Tabulk faltem tertic, apud finus five numeros na_ turales geometricè decrefcentes, fuos \dagger numeros artificiales Arithmetice crefcentes inferere.
23. Arithmetice cref cere, eft equalibus temporibus aquali femper quantitate augeri.

Vt ex puncto b fixo verfus d, infinitè producatur linea: in qua, ex b verfus d procedat punctus a, movens ea lege, vt æqualibus temporis momentis æqualibus feratur fatiis: qux fint $b_{1,1} 1_{2}, 23,34,4,5, \& c$. Dico hoc incrementum per $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$, \&c. Arithmeticum dici. In numeris autem fint $b \mathrm{I}, \mathrm{IO}$: 62,20:6 3,30:6 4, 40:6 5,50. Dico 10, 20, 30,40, $50, \& c$. Arithmeticè crefcere: quia æqualibus momentis, xquali numero denariifemper augeri intelliguntur.

B 3
Geome-

Proposition 21: The third table now contains numbers from the initial radius of the circle defining the sines $(10,000,000,000)$ to half that value. The numbers in the columns are interpolated in that range by the ratio 100 to 99. Between each value at the head of the columns there are now 21 other values (down the column) in the ratio of 10,000 to 9,995 . Similarly for the first and second tables. These three table can be used to produce a table of logarithms.
Proposition 22: The third table contains numbers that decrease geometrically. Now the logarithms of these numbers must be added in arithmetically increasing sequence.
Proposition 23: This defines an arithmetic sequence (see proposition 2)

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

24.	14 Mirifici Logarithm, Geometricè decrefcere, eft equalibus temporibus quantitatem primò totam, inde aliam atque aliam ejus partem fuperftiiem, fimili femper proportionali parte diminui. T $1-243^{2}$ G G G Vt fit linea finus totius $T S$, in hac moveatur punctus G, à T in I verfus S. quantoque tempore deferturà T in 1 , qux fit (exempli gratiâ) decima pars $T S$: tanto idem G tempore moveatur $a b_{1}$ in 2 , qux fit decima pars i $S: \&$ à 2 in 3 , qux fit decima pars $2 S: \&$ à 3 in 4, qux fit decima pars 3 S, \& fic de cateris. Dico hos finus TS, i S, 2 S, 3 S, 4 S, \&c. dici Geometricè decrefcere: quia inæqualibus fpatiis proportione fimilibus \& tempore equalibus diminuuntur. In numeris fit T S, 100000000: IS,9000000: 2 S, $8100000: 3$ S, 7290000: 4 S, fit 6561000, \&c. Dico hos finuum numeros, $x q u a l i b u s$ temporibus fimili proportione diminutos, dici Geometricè decrefcere.
25:	Vnde punctus mobilis Geometricè ad fxum accedens, velocitates fuas prout distantias, à fixo proportionatas babet. Vt repetito pracedenti Schemate, dico quum mobilis púctus geometricus G eft in T, ejus velocitas eft ut diflantia T S: \& quum Geft in I, ejus velocitas eft ut I S: \& quum in 2 , ejus velocitas eft ut $2 S$, \& fic de cateris. Atque ita qux eft proportio diftantiarum T S, IS, 2 S , $3 \mathrm{~S}, 4 \mathrm{~S}$, \&c. adinvicem, ea etiam erit proportio velocitatung G in punctis $T, 1,2,3,4, \& c$. adinvicem. Nam magis minúfve velox punctus arguitur, prout magis minúfve longè fub æqualibus temporibus ferri confpicitur. Qualis itaque proceffus ratio, talem etiam $\&$ velocitatum effe neceffe eft: at talis eft fub x qualibus temporibus ratio proceffuum $\mathrm{T}_{\mathrm{I}, \mathrm{I}} \mathrm{I}_{2} 23,34,45, \& \mathrm{c}$. qualis

Proposition 24: This defines a decreasing geometric sequence (see proposition 2)
Proposition 25: Defines a line (illustrated in Proposition 24) and a point moving from T to S with ever decreasing velocity. The velocity decreases in the ratio of the distance remaining to S to the whole distance of the line.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Proposition 26: The line TS is the radius of the defining circle for the sine function, so T is assumed to be the whole sine $(10,000,000,000)$ and S is assumed to be the sine of zero degrees (i.e., zero). TS has a point, d, moving down it with decreasing velocity (a decreasing geometric series) while the line bi has a point moving down it with constant velocity (and increasing arithmetic series). The logarithm of the sine dS is the number measuring the line bc.
Proposition 27: The logarithm of the whole sine is zero.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Proposition 28: The logarithm of a sine will always be bounded by an upper and lower limit which can be determined by the geometry of these lines and points (see the translation by Macdonald for details).
Proposition 29 and 30: These explain, and give an example, of how to find the limits between which any given logarithm must fall.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

$$
\begin{aligned}
& \text { Canonis Constrvctio. } \\
& \text { 9999999, babet fuum artificialem numerum inter terminos } \\
& 1.000001 \text { \& I.0000000- } \\
& \text { Nam per prxmiffam aufer } 9999999 \text { à finu toto cy- } \\
& \text { phris aucto, fiet unitas cum fuis cyphris pro minore } \\
& \text { termino: hanc unitatem cyphris auctam, \& multiplica- } \\
& \text { tam in finum totum, divide per 9999999, \& fienk } \\
& 10000001 \text {; five (fi majorem accurationem requiris) } \\
& 1.0000001000000 \text { I promajoretermino. } \\
& \text { 31. Infenfibili differentia diftantes termini ipfi, five inter eos } \\
& \text { quidv is pro numero artificiali vero habetur. } \\
& \text { Vt in fuperioriexemplo, finus hujus } 9999999 \text {,artifi- } \\
& \text { cialis numerus habetur hic } 1.0000000 \text {, five hic } \mathrm{I} .000 \text {, } \\
& 00010 \text {, five omnium optimè hic } 1.0000005 \text { : quia enim } \\
& \text { ipfi termini } 1.000000 \text { I \& } 1.0000000 \text {, infenfibili fra- } \\
& \text { ctione utpote } \frac{1}{1,00000} \text { differunt } \mathrm{ab} \text { invicem:ideò } \& \text { ipfi, \&- } \\
& \text { quicquid inter cos eft,multò minùs, multóque infenfibi- } \\
& \text { liore errore, à vero different artificiali inter hos termi- } \\
& \text { nos conftituto. } \\
& \text { Quotcunque finuum Geometricâ proportione à finu toto de: } \\
& \text { ficientium, vnius artificiali numeroaut terminis datis, catero. } \\
& \text { rum ctiam dare. } \\
& \text { Confequitur hoc neceffariò incrementi Arithmetici, } \\
& \text { decrementi Geometrici, \& numeri artificialis definitio- } \\
& \text { nes: fiquidem per illas, ut finus Geometricâ proportio. } \\
& \text { ne decrefcunt continuò: ita interim fui artificiales, con- } \\
& \text { tinuo Arithnetico progreffu per rqualia accrefcunt. } \\
& \text { Vnde cuilibet finui Geometricx progreffionis decref- } \\
& \text { cendo, refpondet fuas artificialis Arishmetica progref- } \\
& \text { fionis crefcendo : primo fcilicet primus, \& fecundo fe- } \\
& \text { cundus, \& fic deinceps. } \\
& \text { Ita ut fi primus artificialis, refpondens primo finui } \\
& \text { poft finum totum detur, fecun Jus artificialis erit ejus } \\
& \text { duplum. tertius triplum, \& fic de cateris: donec omnes } \\
& \text { omnium artificiales innotefcant, ut fequenti exemplo } \\
& \text { patebit. } \\
& \text { C Hinc }
\end{aligned}
$$

Proposition 31: If the upper and lower limits of a logarithm are very close together, then either of these numbers (or a number between them) may be taken as the logarithm with very little effect on any resulting computation. Proposition 32: In a table of logarithms, if the first one in the table after the radius itself is known, then the others may be found from it simply because they will be part of a uniformly increasing arithmetic sequence. If the second logarithm in the table in x then the third will be $2 x$, the next $3 x$ etc.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Proposition 33: Napier shows that the limits on second logarithm in the table (for the sine $9,999,999$) must be the numbers 1.0000000 and 1.0000001 (the true logarithm for this second sign must be between these two numbers). This means that the logarithm for the third sine $(9,999,998.0000001)$ must be between 2.0000000 and 2.0000002 , the logarithm for the fourth sine (9999997.0000003) must be between 3.0000000 and 3.0000003 , etc. Proposition 34: Because the logarithm of the radius is zero, the difference between the logarithms of any other sine and the logarithm of the radius must have the value of the logarithm of that sine (i.e., $x-0=x$). Proposition 35: As the sines get smaller the logarithms get bigger, thus for two sines A and $B(A>B)$ if $\log (B)-\log (A)=x$ then $\log (B)=\log (A)+x$ and $\log (A)=\log (B)-x$. Note that this takes some thought for the modern reader as Napier's logarithms were, in some ways, the reverse of modern base 10 logarithms.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Canonis Constrvctio.

tiam à majore artificiali, ut habeas minorem artificialem licet majoris finus.
36. Similiter proportionatorum finuum funt equi-differentes artificiales.

Confequitur hoc neceffariò definitiones artificialium \& motuum : Nam cùm per eas, Geometrico decremento fimiliter proportionato, refpondet Arithmeticum incrementum xquale femper: neceffario fimiliter proportionatis finibus, refpondere æqui-differentes artificiales \& numeros, \& numerorum terminos concludimus. Vt infuperiori exemplo primx Tabulx, quia fimilis eft proportio inter primum proportionale poft finum totum 9999999.0000000, \& tertium 9999997. 0000003 : ei quxeft inter quartü 9999996.0000006, \& fextum 9999994.0000015 . Ideò numerus artificialis ifte 1.00000005 primi, differt ab artificiali ifto 3.00000015 tertii, eâdem differentiâ, quâ artificialis ifte 4,00000020 quarti, differt $a b$ artificiali ifto 6.00000030 fexti proportionalis. Eâdem etiam eft æqualitat is ratio inter differentias terminorym artifi, cialium adinvicem : videlicet tam minorum inter $\{\mathrm{f}$, quam etiam majorum inter fe, quorum finus funt fimiliter proportionati.
37. Vt trium finuum in proportione Geometrica continuatorum, guadratum medii equatur facto ex ductis invicem extremis: Ita in fuis artificialibus numeris, duplum medii equatur aggregato extremorum. Vnde horum artificialium duobus quibuf. cunque datis, tertius innotcfcit.

Quia horum trium finuum, ratio qux eft inter primum \& fecundum, fimiliseft rationiquaeft inter fecundum \& tertium: Ideò (per præmiffam) fuorum artificialium ea eft differen ia inter primum \& fecundu'n, que eft inter fecundum \& tertium. Sit (verbi gratiâł. primus artificialis lineâ b c expreffus, fecundus lineâ

$$
\mathrm{C} 2, \mathrm{~g}, 0, \mathrm{bd} \text {, }
$$

Proposition 36: If sines are in the same ratio (i.e., A / B and C / D are the same) then the logarithms of A and B and the logarithms of C and D are the same when subtracted.
Proposition 37: If three numbers (Napier says three sines which amounts to the same thing) A, B and C are in geometric progression, then it is known that $\mathrm{B}^{2}=\mathrm{A} * \mathrm{C}$ and thus $\log (\mathrm{B}) * 2=\log (\mathrm{A})+\log (\mathrm{C})$.
Napier, of course, did not use this modern notation but expressed the relationship in words, as was the custom at the time.

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Mirifici Logartthmo

b d, tertius lineâ be:fintque unicâ lineâ bc decomprehenfi hoc modo

fintque differen ix c d \& de xquales: horum medium b d dupletur, productâ lincâ hâc à bultra e in f, ita ut $b \mathrm{f}$ fit duplum $b \mathrm{~d}$. Dico $b \mathrm{f} x q u a r i$ utrifque lineis, b c primi artificialis, \& b e tertii : ab æqualibus enim bd \& d f, aufer æqualia c d \& d e:fcilicet c d, à bd, $\& d e, a d f: \& r e m a n e b u n t b c \& e f$ neceffario $x q u a$. lia. Cùm itaque tota $b \mathrm{f}$, xqualis fit utrifque b e \& e f: ergo \& utrifque be \& b c æquabitur, quod erat demonftrandum. Vnde fequitur canon: fi trium horum artificialium medium datum duplaveris, \& hinc fubftraxeris extremum datum, reliquum extremorum quxfitum innotefcet: \& fi extrema data conjunxeris, \& aggregatum hoc bipartiveris, medium fiet notum.
38. 2uatuor Geometricè proportionalium, ficut factum ex ductu mediorum, equatur facto ex ductu extremorum : Ita fuorum artificialium, aggregatum mediorum requatur aggregato extremorum. Vnde horsm artificialium tribus quibuccunque datis, quartum innotefcit.

Quia horum quatuor proportionalium, ratio qux eft inter primum \& fecundū, fimilis eft rationi quæ eft inter tertium \& quartum: Ideò (per penultimè præmiffam) fuornm artificialium, ea eft differentia inter primum \& fecundum, qux eft inter tertium \& quartum. Tales itaque quantitates in linea b f fuprafcripta fumantur, ut hic, quarum b a primum artificialem, b c fecundum, b e tertium, \& b g quartum referat, factis differentiis

a c \& e g rqualibus: Ita ut d in medio c e pofitum, in medio a g etiam poni neceffe eft. Iam dico aggregatum b c

Proposition 38: If any four numbers $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D are in some geometric progression, then $\mathrm{B}^{*} \mathrm{C}=\mathrm{A} * \mathrm{D}$ and thus $\log (B)+\log (C)=\log (A)+\log (D)$.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

CANONIS Constrvctio.

$b c$ fecundi, \& b e tertii : xquari aggregato $b a$ primi , \& b g quarti. Nam quia (per præmiffam) duplum b d, quod eft b f, xquatur utrifque $b c \& b$ e: quia differentix corum à b d, videlicet $\mathrm{c} \mathrm{d} \& \mathrm{~d}$ e funt x quales. Eâdem ratione, \& idem bf æquabitur utrifque ba \& b g : quia eorum differentix à b d, videlicet a d \& dg funt etiam æquales. Quum itaque \& aggregatum ex $\mathrm{b} \mathrm{a} \& \mathrm{~b} \mathrm{~g}$, \& aggregatum ex bc\& be, fint iidem duplo b d, quod elt b f xqualia: ergo \& inter fe xquabuntur, quod erat demonftrandum. Vnde fequitur canon, fi quatuor horum artificialium, ab aggregato extremorum datorum, fubduxeris alterum mediorum cognitum, relinquetur reliquum medium quod quarebatur: \& fiab aggregato mediorum cognitorum fubduxeris alterum extremorum cognitum, relinquetur extremum quxfitum.
39. Duorum artificialium differentia, eft inter duos terminos, ad quorum maiorem $\int e$ babet $\sin u s$ totus, vt corum artificialium minor finus ad finuum differentiam : \& ad minorem terminum fe habet finus totus, vt artificialium finus maior ad finuum differentiam.

Sit finus totus T S, finus duo dati d S major, \& e S minor: Vltra S T fignetur puncto V diftantia T V , ea lege, ut S T fe habeat a T V, ut e S minor finus, ad de differentiam finuum. Deinde citra T verfus S, fignetur puncto c diftantia T c, ea lege, ut T S fe habeat ad I c, vt d s finus major, ad de differentiam finuuin. Dico differentiam artificialium refpondentium finibus d S \& e S, conftitui inter terminos $V \mathrm{~T}$ majorem, \& T c minorem. Nam quia ex hypothefi, ut e S ad de, ita T S ad TV; \& ut d S ad d e, ita T S ad Tc fe habent: ideò etiam (ex natura proportionalium) fequuntur dux conclufiones: Primò, quod V S fe habet

C 3

Propositions 39 and 40 show that the difference between the logarithms of two sines lies between a lower and upper limit and that these limits can be so close that their difference can be ignored, thus giving you the logarithm of the difference between two logarithms of sines. This is simply to say that if you know the logarithms of two sines (A and B), you can easily find the logarithm of A/B.
Details of the exact process can be found in the English translation by Macdonald mentioned in the introductory notes.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

22 Mirifici Logarithm.

ad T S, ut idem T S adc S. Secundò, quod fimilis eft ratio T S ad c S, rationi quæeft d S ad e S . Er proptereà (per 36) differentia artificialium refpondentium finibus d S \& e S, xqualis eft differentix artificialium refpondentium finui toto T S, \& finui c S. At hacedifferentia (per 34) eft artificialis ipfius finus c S: \& hic artificialis inter terminos V T majorem, \& T c minorem (per 28 pof.) includitur: quia per primam conclufionem jam difam, V s major finu toto fo habet ad finum totum T s, ut idem Tsad c S. Vnde neceffariò differentia artificialium refpondentium finibus d S \& e S , conftituitur inter terminos V T majorem, \& T c minorem, quod erat demonftrandum.
40. Terminos differentic inter artificiales numeros duorum diatorum finuum exhibere.

Quum per premiffam, finus minor fe habeat ad differentiam finuum, ut finus totus ad majorem terminum differentix artificialium: \& finus major fe habeat ad differentiam finuum, ut finus totus ad minorem terminum: fequetur ex natura proportionalium, quod ducto finu toto per differentiam datorum finuum, orietur ex producto divifo per minorem datorum, maior terminus: \& ex producto divifo per majorem finuum, orietur minor terminus.
ExEMPLVM.

V V fit finuum datorum major 9999975.5000000 , minor autem. 9999975.0000300 : quorum differentiâ 4999700 ductâ in finum totum (adjectis prius octo cyphris utrique poft punctum demonftrationis gratiầ, licet alioquin feptem fufficiant) quod hinc producitur, fi per matorem finum, fcilicet per $9999975.50-$ 00000 diviferis, provenient 49997122 octo figurarum poft punctum prominore termino. Sin quod producitur, per minorem finum, fcilicet per 9999975.0000300 diviferis, provenient .49997124 pro maiore

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Canonis Constrvetio
 23

termin): inter quos (ut demonftratum eft) conftituitur differentia artificialium finumm datorum. Sed quia protractio huius fractionis in octavam figuram ultra punctum, eft accuratio plufquă requifita, prafertim cùm in ipfis finibus feptem tantum ponantur figura poft punctum: ideò deletâ octavâ illâ five ultimâ utriufque termini figurâ, uterque terminus unà cum ipfa artificialium differentia, in fractione 4999712 ftabiliri poteft, abfque vel minimo fcrupulo fenfibilis erroris.
41. Sinuum vel numerorum naturalium, non in ipsos proportionales prime Tabule, fed prope vel inter eos cadentium: numeros artificiales, corúnve faltem terminos infenfibili dif. ferentia diftantes exhibere.

Sinui dato finum primx Tabulx proxingum, five minorem five maiorem nota : huius tabulati finus terminos artificiales (per 33) quare, \& inventos referva: deinde (per promiffam) terminos differentix inter artificiales numeros finus dati \& finus tabulati, five ambos, five (quia ferè xquales funt, ut fuperioti exemplo patet) corum alterutrum quxre. Hos iam inventos, horúmve alterutrum adde ad illos nuper refervatos terminos, aut ab illis fubftrahe (per8. 10 \& 35.) prout finus datus fuerit minor aut maior tabulato ei proximo: \& qui hinc producuntur numeri, erunt termini propinqui inter quos includeturartificialis numerus finus dati.

Exemplym.

VT fit finus datus 9999975.5000000 , cui finus in Tabula proximus, eft 9999975.0000300 minor dato: huius termini artificiales (per 33) funt 25.000 00025 \& 25.0000000 : deinde (per pramiffam) differentia inter artificiales numeros finuum dati \& tabulati , eff $49997 \mathrm{I}^{2}$: quam (per 35) aufer ab illis terminis, quia funt termini minoris finus, \& provenient $24.5000313 \& 24.5000288$, termini quxfiti finus daC 4

Proposition 41: This instructs the user that, should they want to find a logarithm of a sine (or natural number) not in the tables, then they can use the process of the last few propositions to determine the value.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Proposition 42: The logarithms not actually listed in the second table may, from methods demonstrated in proposition 41, be found.
Proposition 43 provides an example of the process.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Propositions 44 and 45 show that logarithms for numbers not actually listed in the third table may be determined by following the processes similar to those for the earlier tables.

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

26
MIRIfici Logarithm.
tertia T abule, numeros artificiales cxactè fatis dirti: feu inter terminos cognitos infenfibili fractione differentes includi poffe.

Nam quum per pramifan, hujus 9995000 (qui cft primus finus infra finum totum, ex proportionalibus primx Columnx tertix Tabulx) numerus artificialis fit 5001.2485387 abfque errore fenfibili : fecun li proportionalis fcilicet 9990002.5000 , numerus artificialis (per 32) erit 10002.4970774 . Et fic in cateris, progrediendo ufque af ultimum ejus columnx finum $9900473.57808:$ cujus, parị ratione artificialis numerus erit 100024.9707740 :eiufque termini 100024.96 57720 \& 100024.9757760 erunt.
45. Numerorum naturalium, fcu finusm non in ip fos proportionales prime Columna tertia T abule, fed prope vel inter cos cadentium, numeros artificiales exhibere: feu inter cognitos terminos infenfibili fractione differentes includere.

Sinui dato finum prim x Column x tertix Tabulx proximum, five minorem five maiorem nota; huius tabulatiterminos artificiales per præmiffam quare: deinde quartum proportionale fe habens ad finumtotum, ut finuum dati \& tabulati minor ad maioren, per unum ex modis in penultimè pracedente defcriptis quxre: huius quarti ita inventi terminos artificiales (per penultinsè pramiffain) è fecunda Tabula quare, \& inventos adde ad terminos tabulatifinus fuperius inventos, aut ab illis fubftrahe (per 8, 10. \& 35.) \& producenturartificiales termini finus dati.

Exemplym.

$\mathbf{V}_{p}^{\mathrm{T}}$T fit finus datus 9900000 , proportionalis finus primx Colnmnx tertix Tabulx ei proximus, eft 9900473.57808 , cuius termini artificiales per pramiflam funt 100024.9657720 \& 100024.9757760 . Quartum inde proportionale erit 9999521.6611850°, cuius

Proposition 45 provides an example of the process described in proposition 44.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Canonis Constrrctio.

cuius termini artificiales (per 43 è fecunda Tabula defumpti) funt $478.3502290 \& 478.3502812:$ quibus terminis ad terminos fuperiores tabulati (per $8 \& 35$) additis, provenient termini 100503.3260572 \& 100503.3160010 , inter quos neceffariò cadit artıficialis numerus quafitus. Vinde numerus inter hos mediust qui eft 100505.3210291 , pro vero artificiali numero finus 9900000 dati, ftatui abfque fenfibili ertore pateft.
46. Hinc fequitur, omnium proportionalium tertiz T abula numeros artificiales exacte fatis dari.

Nam quum (per pramiffam) 100503.3210291 , fit artificialis primi finus fecund x Columnx, quieft $9900-$ 000 , caterique primi reliquarum columnarum finus ea.fem proportione progre fiantur; neceffariò (per 32 \& 36) eorum numeriartificiales eadem femper differentia crefcunt, additis 100503.3210291 antecedentiartificiali, ut fiat fequens. Habitis ergo fic primis artificialibus cuiufque column x, atque per penultimè pracedentem omnibus artificialibus primæ column x datis; elige tibi, an mavis fimul eiufdem columnx omnes artificiales condere, addendo femper ad fuperiorem artificialem cuiuflibet co'umnx, hanc artificialium differentiam 5001.2485387 , ut fiat proximè inferior eiufdem columneartificialis: An mavis fimul eiufdem ordinis omnes artificiales, fcilicet omnes fecundos fingularum columnarum artificiales; inde omnestertios, inde quartos, \& fic reliquos conftituere, addendo femper 100503.32 Io291 cuilitet artificiali prace fentis columne, ut eiufdem ordinis fequentis columnx artificialis proveniat. Vtrovis enim no lo, omnes omnium huius Tabulx proportionalium habentur artificiales; quorum ultimus, \& ad finu n 4998609.4034 congruens, eft $6934250.800-$ 7528.

Omnibus tertic Tabule naturalibus numeris, afcribendi Sunt fui artificiales, ut tertia Tabula integra fiat er perfecta:
D_{2} quam

Proposition 46: This indicates that all logarithms for the numbers in the third table may be found with sufficient accuracy to not be a factor in any subsequent calculation.

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Proposition 47: Add the logarithms (artificial numbers) to the third table (he now terms this the radical table) and gives examples of what the first, second and last column will contain.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

> Canonis Constrvctio, - 29
> quarum prima, proportionalia illa Geometrica, qux finus numerofque naturales nominamus; fecunda, hos fuos artificiales Arithmeticè per æqualia progredientes contineat. Duobus tamen (compendii gratiâ) animadverfis: Primò, quod illis omnibus artificialibus, unam poft punctum relinqui figuram fatis fit,cateris fex noviflimis jan rejectis: quas tamen fi initio neglexiffes: error inde frequenti multiplicatione priorum tabularum, accreviffet in hac tertia intollerabilis. Secundò, fi fecunda poft punctü figura excedat quaternarium: figura prima, qux fola poft punctum relinquitur, eft unitate augéda.Vt pro $10002.48, \& \mathrm{c}$. rect us eft ponere 10002.5 , quàm 1000 2.4 : \& pro 100035001 , aptiùs ponimus jooo.4, quàm rcoo.3. Itaque eo fitu procedat jam radicalis Tabula quo promittitur.
> 48. Perfectâ jam radicali Tabulâ, ex ea fola T abule artificialis numeros excerpimus.
> Vt enim priores dux Tabulx ad conftitutionem tertix inferviebant; Ita tertia hæc radicalis ad principalem artificialem Tabulam, quàm facillimè \& abfque errore fenfibili condendam infervit.
> Sinuum majorum quàm 9996700 , artificiales numeros fa49. cillimè exhibere.
> Fiet hoc, fola fubftractione finus dati à finu toto. Nam per 29, artificialis numerus finus 9996700 , eft inter terminos 33 co \& 3301 ; qui quidem termini (quia invicem unitate tantum differunt) à fuo artificiali vero, n n poffunt errore fenfibili, videlicet majore unitate differre. Vnde ipfe terminus minor 3300 , qui fola fubftractione habetur, pro ipfo artificiali capi poteft. Eadem neceffariò ratio eft de omnibus finibus hoc majoribus.
> 50. Sinuum omnium intra limites Tabule radicalis comprehenforum, artificiales exhibere.
> sinuum dati, \& tabulati ei proximi, differentiam D 3 duc

Proposition 48: Now that the radical table is finished we can take the logarithms of numbers (or sines) from it alone.
Proposition 49: To find logarithms of sines greater than 9996700 simply subtract it from the radius because (by proposition 29) $\log (9996700)$ must be between 3300 and 3301 and thus we can take the lower limit (3300) as the required logarithm. The process works for all sines greater than this example.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Mirifict Logarithm,

duc in finum totum; produchum partire per facillimum diviforem, qui vel fit finus datus, vel tabularus exproximus, vel inter utrumque utcunque conititutus; \& producetur differentix artificialium aut terminus majoi, aut minor, aut intermedium quidpiam (per 39) quorum nullus à vera artificialium differentia errore fenfibili differet, propter propinquitatem numerorum Tabulx. Et ideò hunc corum quemcunque productum (per 35) adde, ad artificialem tabulati in Tabula repertum, if finus datus fit minor tabulato finu: alioquin illum productum ex hoc tabulati artificiali fubftrahe, \& provewiet dati finus numerus artificialis quxfitus.

Exemplym.

TT, fit finus datus 7489557 , cujus quaritur artificialis. Sinus tabulatus ei proximus eft 7490786. $\mathbf{6}_{119}$, hinc aufero illam adjectis cyphris fic 7489557. 0000 , relinquentur 1229.6 119; qua ducta in finum totum, divido per numerum facillimum, qui fit vel 7489557.0000 , vel $7490786.6: 19$; vel optimè per quippiam inter eos conftitutum, utpote per 7490000 , \& facillima divifione provenient 16401 : qux (quia datus finus minor eft tabulato) adde adartificialem tabulati, videlicet ad 2889 III. 7 , \& fient 289075 I .8 , que idem valent quod 2890751^{4} : fed quia Tabula principalis nec fractiones admittit, nec quicquam ultra punctum, ponimus pro illo 289075^{2}, quieft artificialis quafitus.

Aifind Exemplym.

SIt finus datus 7071068.0000 ; finustabulx ei proximus erit 7070084.4434 , quorum differentia eft 983.5566 ; quibus ductis in finum totum, produCtuin divide optimè per 7071000 , qux funt inter finus datum \& tabulatum, provenient inde 1390.9: qux (quia finus datus excedit tabulatum ei proximum) fubfrahatur ex artificiali numero tabulati in tabula reper-

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Canonis Constrvctio. 3 I

 to, fcilicet à 3467125.4 , remanebit 3465734.5 . Vnde 3465735 ponitur pro artificiali quxfito finus 707 1068 dati. Itaque hac libertas diviforem eligendi mira n parit facilitaten.51. Omnes finus in proportione dupla, babent 6931469.22 pro differentia fuorum artificialium.

Quia enim omnis finus ad furn dinidium eadem eft ratio, gux eft finus totius ad 5000000 : ideò (per 36) differentia artificialium cujufque finus \& fui dimidii, eft ca lem cum differentia artificialium finus totius, \& fui dimidii 5000000 . At ca lem eft differentia artificiahum finus totius, \& finus 5000000 , cum ipfo artificialifinus 5000000 'per 34) cuius 5000000 , artificialis (per premiffam) erit 6934469.2 . Ergo \& idem numerus $693^{1} 469.22$ erit differentia omnium artificialium, quorum finus funt in proportione dupla: \& per confequens duplum ejus, feilicet $\mathbf{1} 3862938.44$, erit differentia omnium artificialium, quorum finus funt in ratione quadrupla: \& triplum ejus, videlicet 20794407.66, erit differentia omnium artificialium, quorum finus funt in ratione ocqupla.
52. Omncs finus in proportione decupla, babent 23025842.34 prodifferentia fuorum artificialium.

Nan per penultimè promiffan, finus 8000000 habet artificialem fuum 2231434.68 : \& per premiffam, differentia inter artificiales finuum $8000000, \&$ fuæ octavæ partis 1000000, eft 20794407.66: Vnde per additioné fiunt $2302584^{2} .34$, pro artificiali finus 100 0000 : \& quan al hunc finus totus fit decuplus, omnes finus in ratione decupla, eantem illam differentiam 23025842.34 , inter fuos artificiales habebunt, eâddem caufâ \& ratione, quan jan in dupla proportione per pracedentem expornimus, quod probandum crat. Et per confequens, centuplx proportioni refpondebit hujus artificialis duplum, quod eft 46051684.68 , pro

D 4

Propositions 51 to 52 are comments on the methods of interpolating between values in the third table.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Napier constructs another table contain logarithms that can be used in the process described in Proposition 54.
Proposition 54: if a sine falls outside the limits of the radical table, then multiply it be $2,4,8,10,20$ etc (the numbers from the first and third columns of the table in the previous proposition) until it falls within the limits of the radical table numbers. Select the logarithm of the resulting number (or the nearest one to it) from the radical table and add the logarithm (columns 2 and 4) from the table.

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Canonis Constrvctio.

 tineatur. Hujus jam fub Tabula comprehenfi artificialem (per 50) quare, cui acquifito adde tandem differentiam artificialem, quam Tabella indicat priori conveniffemultiplicationi.
Exsmplym.

QVaratur, quem artificialem finus 378064 habeat; is cùm ultra limites Tabulx radicalis excludatur, per numerum aliquem proportionum pracedentis tabellæ, utpote per 20 ducatur, fietque 7561280 , cujus jam intra Tabulam cadentis artificialem (per 50) quxre, fietque 2795444.9 , ad quem adde differentiam in Tabella inventam convenientem vigecuplx proportioni, qux eft 29957311.56 , fientq́ue 32752756.4 . Vnde 32752756 eft artificialis quxfitus, finus 378064 dati.
55. Vt dimidium finus totius, fe babet ad finum dimidii alicujus arcus; Ita finus complementi ejufdem dimidii, ad finum totius arcus.

Sit finus totus $a b$, dupletur \& fit $a b c$; hac diame:tro fiat femi-circulus, in quo fignetur arcus ille a e, bifariam in d divifus: ejus ergo dimidii quodeft de, extendatur complementum $a b e$ verfus c, quod fit arcus e h, cui \& h c neceffariò x quatur: quia de h quadrans xquatur reliquo quadranti arcuum a d \& h c. Proinde ducantur linea e i perpendicularis adaic, qua ideò finus eft arcus a de: \& linea
 a e, cujus dimidium $f e$, eft finus arcus $d e$, quieft dimidium arcus a d e: \& linea e c, cujus dimidium e g eft finus arcus e h, \& ideò eft finus complementi arcus de: dimi dium auteng finus totius $a b$ fit $a k$. Dico ut $a k f e$ habet adef, itaeg adeife habebit: duoenim trianE
guli

Propositions 55, 56 and 57 provide some trigonometric identities that can help simplify the calculations to find a logarithm of certain sines.

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

34 Mirifici Logartthm:

gulicea, \& cie, xqui-anguli funt: quia ice, vel a c e angulus utrique communis eft, \& uterque $\mathrm{c} i \mathrm{i}$, \& c e a rectus eft, ille ex hypothefi, hic, quia in peripheria eft, \& femi-circulum occupat. Ideoq́ue ut a chypotenufa triangulice a, ad eius minus latus a e; ita fe habet c e hypotenufa triang. c i e, ad ejus minus latus e i. Et quium totum a c fe habeat ad a e, ut totum e cad e i: fequetur inde dimidium a c, quod eft a b, fe habere al a e, ut dimidium ec, quod eft e g, fe habet ade i. Et denique cum jam totum a b eft ad totum a e, ut eg ad e i: Concludimus neceffariò dimidium $a b$, quod eft a k, fe habere ad dimidium a e, quod eft f e: ut e g fe habet ad e i, quod erat demonftrandum.
Duplum artificialis arcus 45 graduum, eft artificialis di. midii finus totius.

Repetito pracedenti Schemate fit cafus talis, quòd a e, \& e c, fint xquales. In hoc cafu cadet in b, eritque e i finus totus, atquee f, \& e g xquabuntur: eorumque quivis finus eft $45 \mathrm{gra}-$ duum. Et quia (per pracedentem) qux eft proportio dimidiii finus totius a k, ad ef finum 45 grajuum: ea eft etiam proportio e g finus quoque 45 gra-
 duum, ad e i iam finum totum. Ideò (per 37) Juplum artificialis finus 45 graduum, x quale eft artificialibus extremorum, fcilicet finustotius, \& cius dimidii. At horum amborum artificiales, funt tantum artificialis alterius eorum, fcilicet dimidii finus totius: quia reliqui fcilicet ipfius finus totius (per 27) artificialis nullus eft. Neceffariò igitur duplum artificialis arcus 45 graduum, eft artificialis dimidii finus totius, quod erat demonftandum.
57.: Aggregatum ex artificiali dimidii jonus totius, © artifin

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Canonis Constrvetio. 35

ciali cuiufque arcus, equatur aggregato artificialium dimidii cjus arcus, \& complementi bujus dimidit. Vnde artificialts buius dimidii arcus babcri poteft, ceterorum trium artificialibus detis.

Quia per penultimè pramiffam, dimidium finus totius proportionatur af finum dimidii alicuius aicus, 1 t finus complementi eiufdem dimidii arcus, ad finum totius arcus: Ideò (per 38) aggregatum artificialium duorum extremorum, fcilicet artificialis dimidii finus totius, \& artificialis cuiufvis totalis arcus, x quabitur aggregato artificialium mediorum, videlicet artificialis dimidii ciufdem arcus, \& artificialis complementi huius dimidii. Vnde \& per eandem 38, fi addideris artificialem dimidii finus totius (per 51 , vel per promiffan inventum) adartificialem cuiufvistotalis arcus datum: \& hinc fubftraxeris artificialem complementi dimidii prioris arcus datum , relinquetur ipfe artificialis petitus eiufdem dimidii arcus: qux erant demonftranda. Exemplym. Sit artificialis dimidiifinus totius (per 51) 6931469 , fitque arcus totalis 69 graduum \& 20 minutorum, cuiusartificialis fit 665143 datus: totalis arcus dimidium eft 34 graduum \& 40 mi rutorum, huius artificialem quaro. Complementum huius dimidii arcuseft 55 graduum, \& 20 minutorum, cuius artificialis fit 1954370 datus: Addo itaque 69314^{69} ad 665143 , \& fiet aggregatum 7596612: ex quo aufcro 1954370, \& relinquentur 564224^{2} artificialis çuxfitus, arcus 34 graluam \& $4^{\circ} \mathrm{mi}$ mutorun.

Datis artificialibus cmnium arcuum non minorum 45 58. gradibus, omnium arcuum minorum artificiales facillimè b.abertur.

Ex artificialibus arcuun omnium non minorum 45 gra libus per hypothefin datis, habebis per premiffam, artificiales reliquorum omnium arcaum decrefcentium

$$
\begin{array}{lll}
\text { E } 2 & \text { ufque }
\end{array}
$$

Proposition 58: Once the logarithms of sines greater than 45 degrees are know then the ones less than 45 degrees are easy to find. Using proposition 57 it is possible to find all the logarithms for sines down to 22 degrees 30 minutes, and from these down to 11 degrees 15 minutes, etc.

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Proposition 59: Napier describes the layout of the tables in his Descriptio (see the file of that publication for an example).

From the Tomash Library on the History of Computing

Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Canonis Constrictio.

ne |eMinuta gradaum infra fcriptorum | Primx deinde columnæ inferantur numeri minutorum $a b o$ ad 60 progrediendo. Septimæ etiam column x inferantur numeri minutorum à 60 ad o decrefcendo: ea lege, ut primx \& feptimx columnæ bina quævis minuta in eadem linea oppofita, gradum integrum feu 60 minuta perficiant. Exempli gratia, o ad 60, \& 1 ad 59, \& 2 ad $58, \& 3$ ad 57 , \&c. opponantur. Atq; inter bina quxque viginti lineamentorum tranfverforum, tres numeri in quolibet intervallo cujuflibet columnx contineantur. In fecunda columna ponantur numeri finuum, refpondentium gradibus fuprà, \& minutiis à latere lævorfum in eadem linea pofitis. In fexta etiam columna ponantur numeri finuum, refpondentium gradibus infrà, $\&$ minutiisad latere dextrorfum in eadem linea pofitis. Hos finus fuppeditabit tibi communis finuum Reinholdi Tabula, vel fi qua exactior. His peractis, omnium finuum inter finum totum \& fuum dimidium, artificiales per 49 \& 50: cxterorum verò finuumartificiales per 54 computato. Sive aliter, multoq́ue \& exactiùs \& faciliùs, omnium finuum inter finum totum \& finum 45 graduum artificiales, per cafdem 49 \& 50 computato: ex quibus jam habitis, omnes reliquorum arcuum minorum 45 gradibus artificiales, per pramiffam quàm facillimè acquires. Quibus omnibus artificialibus utcunque computatis, in tertia columna locabis artificiales numeros refpondentes gradibus fuprà, \& minutiis à latere finiftro, fuifque finibus lxvorfum in eadem linea pofitis. Similiter \& in quinta columna locabis numeros artificiales refpondentes gradibus infrà, \& minutiis à latere dextro, fuifque finibus dextrorfum in eadem linea pofitis. Media tandem columna fic perficitur: numerum quemque artificialem dextrum, ex artificiali finiftrorfum in eadem linea pofito aufer, notatâ differentiâ in eadem linea inter utrumque, donec totam med iam columnam compleveris, Hanc Tabulam nos ad fingu-

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

After finishing his 59 propositions, Napier points out that, because there are two different processes that could be used (propositions 54 and 58) to calculate a logarithm, they might differ slightly (which, in fact they do). He suggests that, if you start with a table of sines that are more accurate than his (he suggests using a radius of $100,000,000,000$ rather than his radius of $10,000,000,000$) the problem will be eliminated.

CANONIS CONSTRCTIO.
 39

bis fuifque artificialibus inveniendis of continwandis, obferventur regule catere pracedentes. Atque ex completa fic radia cali Tabula, omnium finuum inter finum totum \& finum 45 graduum artificiales, exactıßim'e per 49 \& so reperies: atque e.x artificiali arcus 45 graduum duplato, babebis artificialem dimidii finus totius per so. Et tandem ex his iam habitis, cateros artificiales per penultimè pracedentem exquires; quos in ordinem \mathcal{T} abale per pracedentem rediges, \& fiet Tabula, omnium certè Mathemati. carum T abularum praftantijima © ad vjus preclarif. mos parata.

Finis conftructionis Tabule Artificialis.

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

This appendix is the one in which Napier describes the base 10 logarithms that were developed by he and Henry Briggs. In this (base 10) system he proposes that the $\log (1)=0$ and $\log (10)=10,000,000,000$. Once again the English translation by Macdonald mentioned in the introductory notes should be consulted for the details of the creation of this new form of logarithms.

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

APpENDIX.
plsm 10 atque vnitatem (auctos calculi gratiâ quot vis cyphris, vtpote duodenis) capiantur quatuor media proportionalia, feus potiùs (per extractionem radicis fuperfolide) eorundem minimum, quod fit doctrine gratia A. Inter A \& vnitatem, capiatur fimiliter ex quatuor proportionalibus minimum me. dium, quod fit B. Inter B 隹vnitatem, capiatur medium quartum feu minimum, quod fit C. Et ita progredere per extractionem fuperfolide radicis, dividendo intervallum inser recens inventuns \& vnitatem, in quinque intervalla proportio. nalia (eu in quatuor media; quorum omnium quartum feu mi. nimum femper notetur, vfque dum ad decimum medium mio nimum perveneris; qua bis notis fignentur D, E, F, G, H, l, K. Computatis jam exactè hifce proportionalibus,perge, do inter K \& vnitatem quare medium proportionale, quod fit L. Sic inter L \& vitatem cape medium proportionale, quod fit M. Sic fimile medium inter M o vnitatem, quod fit N. Eodem artificio (per extractionem quadratam) creentur inter quemque recentem numerum \& vnitatem, reliqua intermedia proportionaliá, his notis fignända $\mathrm{O}, \mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{V}:$ Quorum proportionalium cuilibet, refpondet ordine funs Logarithmus fuperioris feriei. Vnde vnitas erit Logarithmus numeri V, quicunque is fuerit; \& 2 erit Logarithmus numeri $\mathrm{T}, \mathrm{O}_{4}$ nu. meri S , \& 8 numeri R , 16 numeri $\mathrm{Q}, 32$ numeri P, σ_{4} numeri $\mathrm{O}, 128$ numeri $\mathrm{N}, 256$ numeri $\mathrm{M}, 512$ numeri $\mathrm{L}, 1024$ numeri K: Que omnia ex fuperiore conftructione patent. Ex his autem jam conftructis, conftrui poffunt aliorum tum Logarithmorum proportionalia, tum proportionalium Logarithmi. 2Nam ficuti in faticis ex additione ponderum vnitatis, binarii, quaternarii, $8^{\text {rii }}$, or aliorum pariter parium numerorum,omn is creari poteft ponderum numerus, qui apud nos jam Logarithmi funt: Ita ex proportionalibus V, T, S, R, \&c. que illis refpondent, \&u ex ceteris ctians duplicatâ ratione creandis, con-

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

42

APRENDIX.
fitui pofjunt omnium Logarithmorum oblatorum refponden. tia proportionalia, per corundem invicem multiplicationem reJective vo docebit experientia. Hujus autcm operis precipua difficultas, eff in denis proportionalibus duodecim figurarū̀̀ e exaginta figuris fuperfolido more extrabendis: Scd quanto major bac difficultas, tanto exactior oft hic modus in Logarithmis proportionalium, © Logarithmorum proportionalibus inve. miendis.

Alius modus facilè creandi Logarith -

 mos numerorum compofitorum, ex datis Lo. garithmis fuorum primorum.S I duo numeri datorum Logarithmorum, invicem multiplicati componunt tertium; corum Logarithmorum aggregatum erit tertii Logarithmus.

Item f_{i} nuberus per numerum divifus producit tertium, è primi Logarithmo fecundi fubftractus, relinquit tertii Logarithmum.

Siex numero in fe quadratè, cubicè, fuperfolidè, \&oc. ducto, producitur alter quivis; ex primi Logarithmo duplato, triplato, aut quintuplato, producitur illius alterius Logarithmus.

Item \sqrt{i} ex dato per extractionem quadratam, cubicam, fis. perfolidam, of c. extrahatur radix; datique Logarithmus bifecetur, trifecetur, aut per quinque fecetur, producetur Logarithmus ejufdem radicis.

Denique quicunque numerus vulgaris ex vulgaribus compo. nitur per multiplicationem, divifionem, aut extractionem: ejus Logarithmus componitur refpectivè per additionem, fubftraEtionem, duplationem, feu triplationem, \& c. fuorum Logarithmorum. Vnde fola difficultas est in anmerorum primornm

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

APpendix.
Logarithmis inveniendis; qui hac fequenti arte generali inveniuntur.

Sdomnes Logarithmos inveniendos, oportet duorum ali. quorum vulgarium numerorum Logarithmos dari, aut faltem afumi pro fundamento operis, vit in fuperiore prima conftructione, o feu cyphra afjumebatur pro Logarithmo vulgaris vnitatis, \& $10,000,000.000$ pro Logarithmo denarii fell 10 . His itaque datis, queratur quinarii (qui primus numerus est) Logarithmus hoc modo. Inter 10 ór 1 queratur medium
 or o queratur medium Arithmeticum, quod eft $5000,000,000$.

 piatur medium A rithmeticum, quod eft 7500000000 .

In continuè proportionalibus vniverfis.
\mathbf{V}^{T} fumma mediorum \& alterutrius extremi, ad eundem extremum; fic differentia extremorum, ad diffcrentiam extremi giufdem ơ medii proximi.

Compendium dimidii Tabulæ Loga.
RITHMORVM.

Dorum arcuum quadrantem complentium, vt finus majoris, ad finum dupli arcus; Ita finus 30 graduum, ad β_{3} num minoris. Vnde addito Logarithmo dupli arcus ad Logarithnum 30 graduum; of ì producto, fubducto Lo. garithmo majoris, relinquitur Lcgarithmus minoris.

$$
\mathrm{F} 2 \quad \mathrm{Ha}
$$

44
 Appendix.
 Habitudines Logarithmorvm \&
 fuorum naturalium numerorum invicem.

*. D Entur duo finus \& fui Logarithmi. Si totidem numeri aquales finui minori in fe ducantur, quot funt unitates in majoris Logarithmo: \& contrà, totidem equales finui majori in fe ducantur, quot funt vnitates in minoris Logarithmo; erunt duo producta aqualia, \& producti finus Logariths mus, erit numerus factus ex ambobus Logarithmis invicem multiplicatis.
2. Vt finus major ad minorem; Ita velocitas incrementi, aut decrementi Logarithmorum apud minorem, ad velocitatem incrementi aut decrementi Logarithmorum apud majorem.
3. Duo finus in ratione duplicata, triplicata, quadru. plicata, éc. babent fuos Logarithmos in ratione dupla, tripla, quadrupla, σc.
4. Et duo finus in ratione vt ordo ad ordinem, (ideft ut tripli. catum ad quintuplicatum, vel cubus ad fuperfolidum) babent fuos Logarithmos, in ratione vt corundem ordinum indices, id eft, $v t_{3}$ ad s .

Si i primus finus in fecundum ductus producit tertium; Lo: garithmus primi additus fecundi Logarithmo producit tertii Logarithmum. Sic in divifione, diviforis Logarithmus ex dividendi Logarithmo fubductus, relinquit quotientis Logarithmum.
6. Et f quot aquales primo, invicem ducti producunt fecun. dum; totidem aquales primi Logarithmo, fimul additi producunt Logarithmum fecundi.
7. CMedium''quodvis Geometricum inter duos finus, babet fuum Logarithmum medium tale Crithmeticum inter fnuum Logarithmos,

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

APPENDIX.
8. Sinus primus dividit tertium, quoties funt vnitates in A; numerus fecundus dividit cundem tertium, quoties funt vnitates in B: Item idem primus dividit quartum, quoties funt vnitates in $\mathrm{C} ; \mathcal{\text { idem }}$ fecundus dividit eundem quartum, quotics funt vnitates in D . Dico, qua est ratio A ad B, eadem est C ad D, \nsim Logarithmi fecundi ad Logarithmum primi.

Hinc fit quod numeri oblati Logarithmus, eft numerus lo. corum feu figurarum, quas comprehendit factum ex oblato to二 ties in fe ducto quoties funt vnitates in $10,000,000,000$.
Item fi index ordinis fit Logarithmus denarii, numerus fis gurarum (vnâ demptâ) ordinis fcilicet multipli,erit Logaritha mus radicis.

Quaritur, quis numerus fit Logarithmys binarii. Refpondeo, numerus locorum numeri factiex $10,000,0-$ 00,000 binariis invicem ductis.

At dices, hic numerus factus ex $10,000,000,000$ binariis invicem ductis eft innumerabilis. Refpondeo, numerus tamen locorum ejus (quem quaro) eft numerabilis. Ex data itaque radice (binario) \& indice ($10,000,000$, -00) quare numerum locorum multipli, \& non numerum ipfius multipli; \& per regulam noftram invenies 301029995 \&c. pro numero locorum quxfito, \& Logarithmo binarii.

pag. 46

LVCVBRATIONES

 ALIQVOT DOCTISSIMI D. HEN(RICI BRIGGII
In Appendicem pramiffam.

Habitudines Logarithmorvm \& fuorum naturalium numerorum invicem; Si vnitatis Logarithevsfito.

A_{T} is dinobus numeris cum fuis Logarithmis; fi communis aliquis divifor vtrofque Logarith. mos diviferit, ${ }^{\circ}$ ve verque numerorum datorum toties in feipfum ducatur, vt numerus factorum ab alterstro, vnitate tantum fuperetur à qwoto alterno Logarithmi; erunt duo producti aquales. Et Loga~ rithmus numeri producti, erit numerus continuè factus, à quo= tis Logarithmorum ©' communi corundem divifore.

Logarithmi. Sunto dati numeri $\left\{\begin{array}{l}\frac{29118865}{39810718}\end{array}\right.$

4

In this section Henry Briggs adds notes about the base 10 logarithms. They are rather obscure points, but would have been useful in calculating a table of the base 10 logarithms.

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

LVCVBRATIONES.
Sit communis divifor vnitas.
$\left.\begin{array}{l}\text { Primus in feipfum quinquies } \\ \text { Secundus in feipfum ter --- }\end{array}\right\}$ duCus facit $\begin{aligned} 251188649 \\ 1000000\end{aligned}$
Logarithmi.

Continuè pro. portionales	$\begin{aligned} & 1 \\ & 25118865 \end{aligned}$
	63095737
	1588889331
	$3 9 \longdiv { 8 1 0 7 1 8 }$
	100000000
	51188649

$\begin{array}{ll}\text { (1) Latus } & 4 \\ \text { (2) Quadratus } & 8\end{array}$
(3) Cubus $\quad 12$
(4) Biquadratus 16
(5) Solidus 20
(6) Quadr.cubus 24
Continuè
propor-
tionales $\left\{\begin{array}{ccc}1 & \text { (0) } & \text { Logarithmi: } \\ 39810718 & \text { (1) } & 6 \\ 15 \underline{8489331} & \text { (2) } & 12 \\ 63 \underline{0957379} & \text { (3) } & 18 \\ 251188649 & \text { (4) } & 24 \\ \hline\end{array}\right.$

Alivd Exemplym.
Sunto dati numeri $\left\{\begin{array}{lr}\frac{316227766}{} & \text { Logarith } \\ 50118724 & 7\end{array}\right.$
Communis Logarithmorum divifor fit I

Primus fexies $\}$ in feipfum duetus facit $\{3162,7766$

F $4 \quad$ Logar.

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Lyctbrationes.

49
qui ductus in communem diviforem 84509804 facit i 7 . 74705884 Logarithmym numeri produeti.
Notandum quod Cubus fecundi numeri, eique aqualis feptimus figuratus primi; (quem aliqui appellant fecundum fo. lidum) fcribitur notis octodecim: idcirco ejus Logarithmus is fronte gerit 17. prater notas fubfequentes, que exprimust Lo. garithmum numeri, quiiifdem notis fcribitur: fed ejus prima tantums nota verfus finiftrams, denotat nobis integras vxitates quinque, relique note fubfequentes, exprimunt partes, integris hifce adjiciendas. Sic $\frac{5 s_{5}+8,84988}{1006000000}$) © ©c. cuius Logarithmus 74705884.

Quod fi quatuor loci relinquantur integris, ponesda erit in
 rithmus 3.74705884 .

Hinc poterimus datis duobus Logarithmis心 inu primi, invenire finum fecundi. $_{\text {. }}$

Sumatur communis aliquis Logarithmorum divifor (qui quò major fuerit eò commodior erit) is dividat vtrumque: deinde primus finus feipfum multiplicet, do fuos factos: donec numerus factorum vnitate tantum fuperetur à quoto fecundi Logarithmi: vel donec procreetur figuratus, cognominis quoto fecundi Logarithmi. Idem numerus produceretur, fi secundus finus quafitus, feipfum multiplicaret, dones fieret figuratus, cognominis quoto primi Logarithmi. Vt patet per preceden= tem propofitionem. Huius itaque figurati, à primi quoto des nominati latus queratur: quod, vbi inventum fuerit, erit finus fecundus quefitus. Eritque continu' factus à quotis, \& coms muni divifore, ipjus figurati Logarithmus.

Vt funto dati Logarithmi 8, i4, \& fit finus primi 3 com-

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh
so LVCVBRATIONES:
munis Logarithmorvm divifor eft 2 , qui dat quotos 4.7 . Si 3 feipfum fexies multiplicet, proveniet 2 187, pro figurato, qui in ferie continuè proportionalium ab unitate, feptimum locum occupabit; \& inde dici poterit non incommodè feptinus figurarus. Idem numerus 2187 , in alia continue proportionalium ferie, eft $a b$ unitate figuratus quartus: cujus latus $6 \frac{3,352 t}{1000000}$ eff finus fecundus quxfitus.

Quoti 4. 7. factus ab iis 28 . qui ductus in communern fiviforem 2 facit 56 . Logarithmum figurati 2187 .

Notandum hos Logarithmos diver fos effe ab iis, qui adilIustrationem fuperior is Propofitionis adbibebantur; in hoc autem conveniunt, quod vtrobique Logarithmus vnitatis est 0 . quo pofito, Logarithmi corundem numerorum vel funt aqua= les, vel faltem proportionales inter fe.

Sinus primus dividit tertium) debet primus dividere tertium, \& tertii quotum, \&r quoti deinceps quotum quemlibet, quoties poterit, donec quotus vitimus fit minor divifore. Deinde divifionum harum numerus notetur, non autem quoti alicuius quantitas, (nifs forté minimi, de quo mox plura dicemus) eodem modo fecundus, eundem tertium ejufque quotos dividat. Ita ctiam dividatur ab vtroque quarius. Vt

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

$$
\begin{aligned}
& \text { Lycybrationes: } \\
& \text { Sunto finus }\left\{\begin{array}{lr}
\text { prinus } & 2 \\
\text { fecundus } & 4 \\
\text { tertius } & 16 \\
\text { quartus } & 64
\end{array}\right.
\end{aligned}
$$

Primus 2, dividit fertium 16 , quater. Suntque quoti 8.4.2. 1. Secundus 4, dividitcundem tertium 16 , bis. Suntque quoti 4 1. crunt igitur, $A, 4$. B,2.

Eodem modo primus 2, dividit quartum 64, fexics. 2uotique funt 32.16. 8.4.2.1.
 Sunt igitur C,6, D,3. aio vt $\mathrm{A}, 4$. ad $\mathrm{B}, 2$: fic C,6. ad D,3. فr fic Lcgarithmus fecundi, ad Logarithmum primi.

Si in bifce divifionibus; vltimus co minimus quotus vbique fit unitas, wt in istis quatuor propofitis: erunt numeri quotorum, \& Logarithmi diviforum, reciprocè proportionales. clias ratio non erit prorfus eadem vtrobique: veruntamen fi divifores fuerint exigui \& dividendi fatis magni, ita vt quoti fint plurimi; defectus iste proportionalium, vix awit ne vix quidem percipi poterit.

Hinc fit quod numeri oblati Logarithmus). Sumantur duo numeri 1 о. © 2 , vel quivis alius; \& fit Logarithmus primi datus, fcilicet $100, q u$ eritur Logarithmus fecundi, Primò, fecundus feipfum toties multiplicet, vt numerus factorum, vnitate tantum fuperetur, à dato primi Logarithmo. Deinde vltimus factus, dividatur per primum numerum 10, quoties fieri poterit; 心eodem modo per fecun_ dum. Erit autem numerus quotorum, facti à fecundo divij, 100. (quia factus ifte ef figuratus centefimus. Et fi numeru's

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

52 Lvcibrationes.
aliquoties in feipfum ductus, facict aliquem: idem numerus, fa. ctum toties dividet, ©゚ femel vlterius. wt 3 in feipfum quater ductus, facit 243. idem 3, dividit 243 quinquies, of quo ti erunt 81.27 .9 .3 .1 .) Deinde fi idem factus dividatur à primo 10 , manifeftum eft, numerum quotorum, vnitate tantum minorem effe numero locorum in divifo. Idcircò cùm idem factus dividatur à datis duobus numeris, quoties ficri poteft; erunt (per precedentem propofitionem) numeri quotorum, \& Logarithmi diviforum, reciprocè proportionales. Eft autem numerus quotorum fecundt, aqualis Logarithmo primi: idcircò nu. merus quotorum primi (id eft numerus locorum in facto, vno dempto,) aquabitur Logarithmo fecundi.

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Hic videmus, filogarithmvs denarii fit io, not feu loci in decimo figurato funt quatuor. Idcirco Logarithmvs binarii erit 3 \& ampliùs. In centefimo figurato numerus notarum eft 31 : in millefimo, 302 : in 10000 , 3011 ; \& quò plures fuerint facti, eò propiùs acceditur ad verum Loghrithmym quafitum : in minoribus enim fatis partes ultimo quoto adhærefcentes rationes perturbant aliquantulum. Verùm fi ponatur Logarithmvs denarii, effe $10,000,000,000$; Et binarius in feipfum toties ducatur, ut factorum numerus, unitate tantum fuperetur á dato logarithmo: erit numerus locorum in ultimo facto demptâ unitate, Logarithmus binarii fatis accuratus; quia particulx ultimo quoto adjectx, in numeris adeò magnis, fruftra conabuntur proportionem impedire.

$$
F I N I S
$$

This section is devoted to problems involving spherical triangles. These were most often encountered in navigation and astronomy and proved a major stumbling block to many engaged in those professions. The method normally used for solving for the various sides and angles of a triangle drawn on a sphere was to subdivide the triangle with a line (such as AC above) which would create two triangles with at least one 90 degree angle. The various rules for the solution of these right angles spherical triangles were the ones usually used in solving problems. Napier presents a list of 12 formula for solving these problems without subdividing the spherical triangle.
These formula were, as Napier notes, previously published in the Descriptio.

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

propositiones.

4. Datis latere A D, \& angulis D $\& B$, latus B D acquirere.

Duc finum totum in finum complementi $D, \&$ divide per tangentem complementi A D, \& fiet tangens C D arcus: deindeduc finum CD , per tangentem $\mathrm{D}, \&$ divide productum per tangentem anguli B , \& fit finus B C; adde aut fubftrahe $B C$ \& $C D$, \& fit $B D$,
5. Datis latere A D, \& angulis D \& B, angulum A invenire.

Duc finum totum in finum complementi A D, \& divide per tangentem complementi D anguli, \& proveniet tangens complementi C A D; \& fic habetur ipfe C A D angulus. Similiter duc finum complementi B anguli, per finum CAD, \& divide per finum complementi $D, \&$ fit finus anguli B A C; quo addi:o vel fubftracto ex C A D proveniet B A D quxfitus.
6. Datis $\mathrm{A} \mathrm{D}, \mathcal{O} \mathrm{D}$ angulo cum latere B D , invenire angulum B .

Duc finum totum in finum complementi $\mathrm{D}, \&$ divide per tangentem complementi A D, \& fiet tangens $C D$;cujus arcum C D aufer (vel aliàs adde) à latere B D, \& fit $B C$. Deinde duc finum $C D$, per tangentem D, \& divide productum per finum $B C$, \& fit tangens anguli B.
7. Datis A D, ふ D angulo cum laterc $\mathrm{B} D$, invenire latus A B.

Duc finu n totum in finum compleméti D ,\& divide productú per tangentem comp'ementi A D, \& fiet tangens C D:cuius arcum C D, aufer vel adde lateri B D dato, \& fit B C. Deinde duc finum complementi A D, per finum complementi B C, productum divi e per finum complementi C D, \& proveniet finus complementi A B: \& ita ipfe A B habetur.

Sequi vi Jetur, ex A D \& D angulo cum latere B D datis, invenire angulum A feu B A D: fed hic fitustriplicem requireret Regulan $T_{\text {RIVM. }}$ Mutato igitur A pro $B, \& B$ pro A, erit problema fic. Datis B D or D, cum latere A D, invenire angulum B. Quod prorfus idem eft cum feptimo problema:e, \& duplici tantum regula Trium expeditur.

$$
\text { G } 4 \quad \text { Datis }
$$

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

TRIGONOMETRICE.
 57

proveniet finus complementi anguli $B, \&$ inde ipfe angulus B quafitus.

Sequi videtur, ex A D, \& D, \& A angulis, invenire B D latus: fed in hoc fitu triplicem requirit regulam Trium. Mutatis igitur A in D, \& D in A , erit problema fub hac forma. Datis D A, © A, © D anguls, invenire B A. Prorfus idem cum problemate In \& duplici tantum Regula Trium expeditur.

De fomi-_inum verforum.s prestantia dovfu.

1. Dis s duobus lateribus of angulo intercepto, tertium latus invenire.

Semi-finum verfum differentix crurum, aufer ex femifinu verfo aggregati crurum: reliquum multiplica per fe-mi-finum verfum anguli verticalis intercepti : \& producto divifo per finum tótun, adde femi-finum verfum differentix crurum, \& prodibit femi-finus verfus bafis optatx.

Eâdem ratione ex bafi \& angulis juxta eam, reperitur tertius angulus verticalis.
2. Contrà ex tribus lateribus invenire angulum quemvis.

Ex femi-finu verfo bafis, aufer femi-finam verfum differentix crurum in finum totum ductum; reliquum divide per femi-finum verfum aggregati crurum, minutum fe $n i-$ finu verfo differentix crurum : \& prodibit femi-finus verfus anguli verticalis quxfiti. Eâdem ratione ex tribus angulis inveftigantur latera.
3. Datis duobus arcubus tertium dare, cujus finus aquetur diffe. rentice finuum priorum.

Sit arcus 38 : í, ejus Logarithmus 484504 : arcus alter 77 gr . Horum accipe complementa $51: 59, \& 13 \mathrm{gr}$. quorum femi-aggregatum eft $32: 2^{2} 9$, femi-differentia verò eft 19:29: quorum Logarithmi funt 621656 \& H 109.

Napier now adds a few more rules using half versed sines (essentially the cosine of half the angle - see the introductory notes on the definition of trigonometric functions).

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

58

PROPOSITIONES.

1098014; quos adde, fient 1719670 ; à quo producto fubftrahe 693147, \& remanebit 10265.23 Logarithmus 21 gr , vel idcirca. Dico finum rectum 21 gr., qui eft 358368 , x qualem effe differentix finuum arcuum 77 , \& 38: í ; qui finus funt 974370, \& 615891 pluis minùs.
4. Dato arcus dare Logarithmum ejus finus verfi.

Sit arcus 13 gr. , cujus dimidium 6; 3á; ejus Logarithmus 2178570 , cujus duplum eft 4357.140° : à quo aufer 693147, \& remanebit 3663993 , cujus arcus eft $1: 2^{\prime \prime} 8$, \& numerus inter finus pofitus eft 25595 : atque is eft finus verfus quæfitus 13 gr .
5. Datis duobus arcubus tertium dare, cujus finas aquetur aggre. gato finuum priorum arcuum.

Sit unus arcus 3 8:í, alter arcus i: 2'8: eorum aggregatum eft $39: 26$, \& corum differentia eft 36:3 3 : femi-aggregatum autem eft 19:44́: , femi-differentia verò eft 18 : ${ }^{1} \mathbf{K}_{2}^{1}$. Adde ergo Logarithmum femi-aggregati, qui eft 1085655 , ad Logarithmum differentix, qui eft 518313 , \& fit productum 1603968: à quo aufer Logarithmum fe-mi-differentix, qui eft i160177, remanent 443791 Logarithmus:cuirefpondet arcus $39: 56$, finus verò 641896. Qui quidem finus æquatur utriq. finui ${ }_{3} 8$:í, qui eft 615661 : \& finui $1: 2$ \&́, qui eft 25595 aut juxtà.
6. Dato arcu \& Logarithmo fui finus recti; arcum dare, cujus finus verfus fit priori finuirecto requalis.

Sit arcus 39:56, cui refpondet Logarithmus 443791 (ignoto finu recto,) Logarithmo 44379 adde Logarithmum 693147 , fient 1136938 . Logarithmum hunc bipartire, \& fiet Logatithmus 568469 : cujus arcum 34: 3 ó duplica, \& fient inde 69 gr . arcus qui quærebatur. Dico enim quod finus rectus 39 gr .\& 5^{6}, eft æqualis finui verfo 69 gr : : uterque enim finus eft 641800 , aut propè.

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

Trigonometrice.

Trianguli Spherici A B D, datis cruribus or angulo ver. ticali, bafin dare.

SIr Triangulum Sphæricum A B D, detur angulus verSticalis A, $120 \mathrm{gr} .2^{4} 44^{\prime \prime}$: crus alterum ambientium detur 34 , crus reliquum 47 gr . dimidium anguli verticalis 60: 12 : $22_{2}^{1 /}$, cujus Logarithmus 141766° : ejus duplo 283533 , adde Logarithmos crurum $581260 \& 312858$, fit fumma 117765 1: qui eft Logarithmus femi-differentix finuum verforum bafis \& differentix crurum: atque idem eft Logarithmus finus recti 17: 56; quem arcum, inventum fecundum appellamus: eft enim inventum primum quod fequitur, Differentiam crurum 13 bipartire, fient 6:30́: cujus Logarithmum 217857° duplica, \& fient 4357140 pro Logarithmo dimidiifinus verfi 13 gr .; \& pro Logarithmo linus rectio gr. $44^{\prime}:$ quem arcum 4́4 pro invento primo habemus. Horum inventorum aggregatum eft 18 gr. 4ó, \& ejus Logarithmus eft 1139241: femi-aggregatum autem eft 9 gr. 2ó, \& ejus Logarithmus eft 1819061 : differentia verò eft 17 gr. 12, \& ejus Logarithmuseft 1218382 , femi-differentia verò eft 8: 3 б, cujus Logarithmus 190022 I. Adde ergo Logarithmum femi-aggregati 18 19061, Vel ad hunc Logarithmum Vel ad anti-logarithmum 1218382 , \& fiet produ- femi-differentix, qui eft Ctum 3037443 : à quoau- 11307 , fient 1830368 : fer Logarithmú 1900221, hinc fubftrahe 693147, \& \& remanebunt 1137222 . reftabunt 1137221 .

Hos bipartire, fient 568611 , cujus Logarithmi arcus eft $34: 3$ ó,quem arcum duplica, \& fiet bafis quæfita 69 graduun.

Converfum buius problematis, ad inveniendum angulum ex datis lateribus habetur lib. Logar. Cap. 6. Sect. 8. fed partim per Logarithmos, partim per arcuum proftapharefin.

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh
$60 \quad$ Propositiones:
Notandum in pracedenti \& Sequentibus problematis nullà opus effe cafuum obfervatione: Jpecies enim omnium partium unà cum quantitate, ex ipfo calculo prodiunt.

Sequitur alia converfio pracedentis directa.

DAtam bafin 69 gr. bipartire, fiet 34:3ó, cujus Logarithmus eft 568611 : quem duplica fient 1137222 : cuius arcum $18 \mathrm{gr} .4{ }^{2}$, pro invento primo nota: fuperioris autem Logarithmi 4357140 arcum 0 gr. 44 , pro invento fecundo nota. Horum arcuum complementa funt 89: 16, \& $71: 18:$ horum femi-aggregatum eft $80: 1^{\prime} 7$, \& ejus Logarithmus 14449: femi-differentia verò 859 , eiufq. Logarithmus 1856956: quos adde, fient 1871405: à quibus fubftrahe $693147, \&$ relinquentur 1178258 , cujus arcus eft $17 \mathrm{gr} .5 \%$, quem arcum, inventum tertium hîc vocamus: à cujus Logarithmo aufer Logarithmos crurum 581260 \& 312858 , \& relinquentur 283533 ,quem bipartire, fient 141766 Logarithmus femi-anguli verticafis $60: 12: 24 ;$. Totus ergo angulus verticalis quafitus eft 120: 24: 4夕.

Regula alia proftapharetice inventionis bafis.

Emi-differentiam finuum verforum aggregati \& differentix crurum nota: Nota etiam femi-finum verfum anguli verticalis. Notatos hos inter finus rectos quare, \& femi-differentiam finuum verforum aggregati \& differentix fuorum arcuum in Tabula occurrentium, pro invento fecundo figna'is : \& pro invento primo capiatur femi-finu; verfus differentix crurum. Hxc inuenta adde, \& proveniet femi-finus verfus bafis quæfitx.

Contrà autem ex femi-finu verfo bafis, aufer primum inventum, quod eft femi-finus verfus differentix crurum,

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

TRIGONOMETRICA:

61
\& prodibit fecundum inventum: quod per quadratum finus totius ductum, \& divifum per femi-differentiam finuum verforum aggregati \& differentix crurum, relinquit in quotiente femi-finum verfum anguli verticalis quxfiti.

Ex quinque partibus trianguli 乃pherici, quarum tres media dantur, duas extremas vno opere invenire. Aut aliàs, dat is duobus angulis apud bafin cum bafi, vtrumǵs crus fic babetur.
(*) A tum, differentiam, \& femi-differentiam, unà cum fuis Logarithmis nota. Inde Logarithmos feri-aggregati \& differentix, \& differentialem femi-bafis adde: \& hinc fubducito Logarithmum aggregati, \& Logarithmum femi-differentix; \& producetur differentialis, qui eft primum inventum. Deinde Logarithmum femi-differentix, \& differentialem femi-bafis adde : hinc aufer Logarithmum, femi-aggregati, \& producetur differentialis, qui eft inventum fecundum. Inventos hos differentiales, quia veri funt, quære inter numeros differentiales: eorum arcus adde, \& habebis crus maius; fimiliter minorem à maiore fubftrahe, \& habebis crus minus.

Aliter pro cruribus invenicndis.

ANgulorum apud bafin Logarithmum femi-aggregati, antilogarithmum femi-differentix, \& differentialem femi-bafis adde: \& aufer Logarithmum aggregati \& 693147 , \& fiet primum inventum. Deinde Logarithmum femi-differentix, anti-logarithmum femi-aggregati, \& differentialem femi-bafis adde: \& hinc aufer Logarithmú aggregati \& 693147, \& fiet inventum fecundum. Cum in ventis age ut fuprà, \& habebis crura.

Idem aliter.
$\mathbf{S}^{\text {Ecantem complementi aggregati }} \underset{\mathrm{H}}{ }{ }_{3}{ }_{\text {fingulorum }}^{\text {apud ba- }}$

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

62

Propositiones.

fin, duc per tangentem femi-bafis: productum duc primò per finum anguli maioris a pud bafin, \& fit inventum primum. Secundò duc per finum minoris anguli, \& fit inventum fecundum. Hos ergo inventos divifos per quadratum finus totius adde, \& fit tangens femi-aggregati crurum: fimiliter maiorem à minore fubftrahe, \& fiet tangens femi-differentix crurum. Eorum ergo arcuum utrumque adde, \& fiet crus maius: fimiliter minorem arcum à maiore aufer, \& fiet crus minus.

Quinque partium proximarum Trianguli ßpherici datis tribus medius, vtramque extremam vno opere, of abfór cafuum obfervatione inquirere.

A
Ngulorum apud bafin, ut finus femi-differentix, ad finum femi-aggregati: Ita finus differentix, ad quartum quod eft aggregatum finuum.

Et ut finus aggregati, ad hoc aggregatum finuum: Ita tangens femi-bafis, ad tangentem femi-aggregati crurum.

Inde ut finus femi-aggregati angulorum, ad finum fe-mi-differentix: Ita tangens femi-bafis, ad tangentem fe-mi-differentix crurum. .
Horum inventorum tangentium arcus, è Tabula tangentium extractos adde, \& prodıbit crus maius: fic minorem à maiore fubftrahe, \& prodibit crus minus.

In this section Henry Briggs adds his remarks to the previous discussion of spherical triangles and related problems.

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

64
ANNOTATIONES.
tus eft 93:12: ${ }^{\prime}$, cuius finus verfus 10558216, cùm fit maio radio, habet Logarithmum defectivum - 54321 .

$\left.\begin{array}{ll}x c \\ c g \\ c h\end{array}\right\}$ pro- $\left.\begin{array}{ll}\text { port. } & \text { ae } \\ \text { af } f\end{array}\right\}$ pro..

Tandem fenfi fextam propofitionem fequentem, hoc ipfum eodem prorfus modo prastare.

Trianguli ßharici A B D]
Alium modum pro inventione bafis fequi poffumus fic.
Si Logaritbmus (inus verfi, dati anguli, addatur Logaritbmis crurum: fumma erit Logarithmus differentia finuums verforums, differentia crurum * bafis quafite. Idcirco per Logarithmum inventum, quaratur differentia finuam verforum, buic differentia addatur finus ver.jus diffcrentia crurum, fumma crit finus verjus bafis quefita.

Vt in hoc exemplo: Crura 34. 47; eorum Logarithmi 581261.31285^{8}. Logarithmus finus verfi dati anguli defectivus - 409615 , qui additus fuperioribus (quod fit per fubduetionem, quia figna funt contraria) dat 484504 , Logarithmum differentix finuum verforum bafis \& differentix crurum.

Linea verò huic Logarithmo refpondens, five fit finus verfus five rectus, eft 6160057 , quæ eft differentia finuum verforum bafis \& differentix crurum. Cui, fi addatur finus verfus differentix crurum 0256300 , fumma 6416357 erit finus verfus ba-

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

AnNotationes
fis quxfitæ : qui ablatus è radio, relinquit 3583643 finum reAum complementi bafis 21 : ó. eft igitur bafis 69 : ó.
Et contrà datis tribus lateribus, invenitur angulus quilibet.
Si. e Logarithmo differentia finuum verforium, bafor ev dijferentia crurum; auferantur Lथgariitbmi crurum, reliquss cht Logarithomus \int inus verfi anguli quafiti.

Vt in priori exemplo è Logarithmo 494504 auferatur 894119 reliquus erit Logarithmus defectivus - 409615 qui dabit nobis finum verfum anguli quæfiti, 120:24:4多.

Ex quinque partibus trianguli \cap pberici] Hac propofitioomnino eadem effe videt ar cum vlrima, gue ed finem adjeeina, pedem modo à me notatur fic (*) Hanc ego prestaniti ßimaten effe luben iffème exiffimo. Sunt autem tres operationes, gua in vltima magis funt deffincta, eariun duas priores in vnam conjicio, fic.

Sunto data bafis 69.0́o

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh
.66
Annotationes.

3.prop. $\{$ Sinus femidifferentiæ angulorŭ $5: 41: 57123095560$ Tangens femibafis 34:30́: \% 3750122
Tangens ${ }_{2}^{\text {d differentix crurum }}$ 6: \}ó: ó 2172127^{2}

$$
\begin{array}{r}
40: 30 \\
6: 30
\end{array}
$$

He fant operationes ab autore tradite. Ego verò, vnam pro duabus primis conftituo, tertiam
verò Servo.
Logarithmi
Pu Sinus compl. 'fummx angulorū 53: 1í: 5 亿́8 2222368

port. $\begin{array}{ll}\text { Tangens femibafis } & 34: 30: 0 \quad 3750122\end{array}$ 40:30:0 1577307

Aifvd Exempivms

Sunto datus angulus 47 : ó.

From the Tomash Library on the History of Computing
Napier, John, Mirifici logarithmorum canonis constructi, 1619, Edinburgh

AnNotationes.
67
Logar.
Sinus femifunmx laterum $45: 2$ ó 3 / $8 \quad 3406418$
2.prop. $\left\{\begin{array}{lll}\text { Sinus femidifferentix laterum } 14: 14: 33 & 14023154 \\ \text { Tangens com. femiang. vert. } 66: 30: 0 & -8328403 \\ \text { Tang }\end{array}\right.$

Tang. femidiff. ang. ad bafim 38:30 $\quad 2288333$
72:30
$\left.\begin{array}{cc}38: & 30 \\ \text { 111: } & 0 \\ 34: & 0\end{array}\right\}$ Anguli ad bafim
Atque hxc omnia conftantiffimè fervantur, five dati fuerint duo anguli, cum latere interiecto: five duo crura, cum angulo comprehenfo. Hoc tantum intereft, quod tertium proportionis locum, in utraque operatione: illic, Tangens femibafis occupat : hic, Tangens compl. femifsis anguli verticalis. In his exemplis, fi Tangens vel fumma finuum, fit maior Radio circulari: Logarithmus eft defectivus, \& habet virgulam pracedentem fic - 8328403 .

Idem aliter]

Hos ergo inventos divifos per quadratum finus totius adde) Ego fic potius fcriberem, quoे res effet manifeftior. Horum ergo inventorum, per quadratum finus totius diviforum, quotos adde, \& fiet Tangens, \&c.

Hac propofitio verißima eft, vt \& proxime antecedens; fed illa per Logarithmos commodifsimè expedietur, hac tota, vix poterit Logarithmorum operationes admittere: quia quoti funt addendi \& auferendi, vt Tangentes inveniantur. Lom garithmorum autem vets cernitur in proportio: nalibus, ঔidcirco in multiplicatione \& divifione: non autem in additione aut fubductione.

F I N I S.

